Find the Duplicate Number
Given an arraynumscontainingn+ 1 integers where each integer is between 1 andn(inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
You must not modify the array (assume the array is read only).
You must use only constant, O(1) extra space.
Your runtime complexity should be less than
O(n^2)
.There is only one duplicate number in the array, but it could be repeated more than once.
题目大意:
给定一个包含n + 1个整数的数组,其中每一个整数均介于[1, n]之间,证明其中至少有一个重复元素存在。假设只有一个数字出现重复,找出这个重复的数字。
注意:
不可以修改数组(假设数组是只读的)
只能使用常数空间
运行时间复杂度应该小于O(n^2)
数组中只存在一个重复数,但是可能重复多次
The first part of this problem - proving that at least one duplicate element must exist - is a straightforward application of the
pigeonhole principle.If the values range from 0 to n - 2, inclusive, then there are only n - 1different values. If we have an array of n elements, one must necessarily be duplicated.
这道题给了我们n+1个数,所有的数都在[1, n]区域内,首先让我们证明必定会有一个重复数,这不禁让我想起了小学华罗庚奥数中的抽屉原理(又叫鸽巢原理), 即如果有十个苹果放到九个抽屉里,如果苹果全在抽屉里,则至少有一个抽屉里有两个苹果,这里就不证明了,直接来做题吧。题目要求我们不能改变原数组,即不能给原数组排序,又不能用多余空间,那么哈希表神马的也就不用考虑了,又说时间小于O(n^2),也就不能用brute force的方法,那我们也就只能考虑用二分搜索法了,我们在区别[1, n]中搜索,首先求出中点mid,然后遍历整个数组,统计所有小于等于mid的数的个数,如果个数大于mid,则说明重复值在[mid+1, n]之间,反之,重复值应在[1, mid-1]之间,然后依次类推,直到搜索完成,此时的low就是我们要求的重复值
Hashmap:
题目不让用多余的空间,所以不能用hash。
class Solution(object):
def findDuplicate(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
hashmap = collections.Counter(nums)
for item in hashmap:
if hashmap[item] >= 2:
return item
Binary Search:
class Solution(object):
def findDuplicate(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
start, end = 1, len(nums)-1
while start+1<end:
mid = (start+end)/2
if self.numberOfsmall(nums, mid)<=mid:
start = mid
else:
end = mid
if self.numberOfsmall(nums,start)>start:
return start
return end
def numberOfsmall(self, nums, mid):
n = 0
for num in nums:
if num<=mid:
n += 1
return n
快慢针(映射):
Last updated
Was this helpful?