Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given[10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is[2, 3, 7, 101]
, therefore the length is4
. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up:Could you improve it to O(nlogn) time complexity?
题目大意:
给定一个未经排序的整数数组,寻找最长递增子序列的长度。
例如,
给定[10, 9, 2, 5, 3, 7, 101, 18]
,
最长递增子序列是:[2, 3, 7, 101]
,因而长度是4
。注意可能存在不止一个LIS组合,只需要返回长度即可。
算法应该满足O(n^2)复杂度。
进一步思考:你可以将时间复杂度优化至O(n_log_n)吗?
解题思路:
1. O(n^2)解法:
动态规划(Dynamic Programming)
2. O(n * log n)解法
下面我们来看一种优化时间复杂度到O(nlgn)的解法,这里用到了二分查找法,所以才能加快运行时间哇。思路是,我们先建立一个数组ends,把首元素放进去,然后比较之后的元素,如果遍历到的新元素比ends数组中的首元素小的话,替换首元素为此新元素,如果遍历到的新元素比ends数组中的末尾元素还大的话,将此新元素添加到ends数组末尾(注意不覆盖原末尾元素)。如果遍历到的新元素比ends数组首元素大,比尾元素小时,此时用二分查找法找到第一个不小于此新元素的位置,覆盖掉位置的原来的数字,以此类推直至遍历完整个nums数组,此时ends数组的长度就是我们要求的LIS的长度,特别注意的是ends数组的值可能不是一个真实的LIS,比如若输入数组nums为{4, 2, 4, 5, 3, 7},那么算完后的ends数组为{2, 3, 5, 7},可以发现它不是一个原数组的LIS,只是长度相等而已,千万要注意这点
Last updated
Was this helpful?