LeetCode_CC150
  • Introduction
  • LeetCode
    • Single Number
    • Contains Duplicate
    • Happy Number
    • Valid Anagram
    • Contains Duplicate II
    • Count Primes
    • Isomorphic Strings
    • Word Pattern
    • Island Perimeter
    • Find the Difference
    • Palindrome Permutation
    • Two Sum III - Data structure design
    • Number of Boomerangs
    • Longest Palindrome
    • Logger Rate Limiter
    • Find All Anagrams in a String
    • Keyboard Row
    • Distribute Candies
    • Shortest Word Distance
    • Majority Element
    • Plus One
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Pascal's Triangle
    • Remove Element
    • Rotate Array
    • Pascal's Triangle II
    • Two Sum II - Input array is sorted
    • Third Maximum Number
    • Max Consecutive Ones
    • K-diff Pairs in an Array
    • Maximum Product of Three Numbers
    • Maximum Distance in Arrays
    • Shortest Unsorted Continuous Subarray
    • Roman to Integer
    • Count and Say
    • Valid Parentheses
    • Longest Common Prefix
    • Valid Palindrome
    • Length of Last Word
    • Repeated Substring Pattern
    • Number of Segments in a String
    • Valid Word Abbreviation
    • Longest Uncommon Subsequence I
    • Student Attendance Record I
    • Reverse Words in a String III
    • Arranging Coins
    • Guess Number Higher or Lower
    • Search Insert Position
    • Min Stack
    • Diameter of Binary Tree
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Binary Tree Zigzag Level Order Traversal
    • Nim Game
    • Add Digits
    • Fizz Buzz
    • Climbing Stairs
    • Array Partition I
    • Power of Three
    • Power of Four
    • Power of Two
    • Ugly Number
    • Find All Numbers Disappeared in an Array
    • Find All Duplicates in an Array
    • Minimum Moves to Equal Array Elements
    • Meeting Rooms
    • Subsets
    • Subsets II
    • Count Complete Tree Nodes
    • Minimum Size Subarray Sum
    • Maximum Size Subarray Sum Equals k
    • Sparse Matrix Multiplication
    • Meeting Rooms II
    • Letter Combinations of a Phone Number
    • Binary Tree Vertical Order Traversal
    • Find the Celebrity
    • Merge Intervals
    • One Edit Distance
    • Multiply Strings
  • Array&String
    • Subarray Sum
    • Maximum Subarray
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Partition List
    • Merge Sorted Array
    • Two Sum
    • 3Sum
    • Product of Array Except Self
    • Rotate Image
    • Spiral Matrix
  • Linked List
    • Merge Two Sorted Lists
    • Insert into a Cyclic Sorted List
    • Sort List
    • Linked List Cycle
    • Copy List with Random Pointer
    • Add Two Numbers
    • Delete Node in a Linked List
    • Reverse Linked List
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Palindrome Linked List
    • Insertion Sort List
    • Remove Linked List Elements
    • Remove Duplicates from Sorted List
    • Swap Nodes in Pairs
    • Remove Nth Node From End of List
  • Binary Search
    • Missing Number
    • Valid Perfect Square
    • 744. Find Smallest Letter Greater Than Target
    • Sqrt(x)
    • First Bad Version
    • Pow(x, n)
    • Find the Duplicate Number
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Total Occurrence of Target
    • Search in a Big Sorted Array
    • Longest Increasing Subsequence
    • Find Peak Element
    • Search in Rotated Sorted Array
    • Search a 2D Matrix
    • Search a 2D Matrix II
    • Closest Number in Sorted Array
    • Search in Rotated Sorted Array II
    • Search for a Range
    • Maximum Number in Mountain Sequence
    • Last Position of Target
    • K Closest Numbers In Sorted Array
    • Sqrt(x) II
  • Binary Tree
    • Maximum Depth of Binary Tree
    • Invert Binary Tree
    • Same Tree
    • Binary Tree Paths
    • Lowest Common Ancestor of a Binary Search Tree
    • Balanced Binary Tree
    • Convert Sorted Array to Binary Search Tree
    • Symmetric Tree
    • Path Sum
    • Minimum Depth of Binary Tree
    • Binary Tree Preorder Traversal
    • Binary Tree Inorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Level Order Traversal II
    • Minimum Subtree
    • Flatten Binary Tree to Linked List
    • Binary Tree Longest Consecutive Sequence
    • Subtree with Maximum Average
    • Number of Islands
    • Serialize and Deserialize Binary Tree
    • Clone Graph
  • Data Structure
    • Hash Table
    • Bubble Sort
    • Selection Sort
    • Binary Search
    • Merge Sort
    • Binary Tree
    • 递归
    • DFS BFS
    • python技巧
  • two pointers
    • Reverse Vowels of a String
    • Reverse String
    • Remove Duplicates from Sorted Array
    • LeetCode 11. Container With Most Water
    • Strobogrammatic Number
    • Move Zeroes
    • Implement strStr()
  • 哈希表
    • Ransom Note
    • Minimum Index Sum of Two Lists
    • Longest Harmonious Subsequence
    • Untitled
Powered by GitBook
On this page
  • 题目大意:
  • 解题思路:
  • 1. O(n^2)解法:
  • 2. O(n * log n)解法

Was this helpful?

  1. Binary Search

Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example, Given[10, 9, 2, 5, 3, 7, 101, 18], The longest increasing subsequence is[2, 3, 7, 101], therefore the length is4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up:Could you improve it to O(nlogn) time complexity?

题目大意:

给定一个未经排序的整数数组,寻找最长递增子序列的长度。

例如,

给定[10, 9, 2, 5, 3, 7, 101, 18],

最长递增子序列是:[2, 3, 7, 101],因而长度是4。注意可能存在不止一个LIS组合,只需要返回长度即可。

算法应该满足O(n^2)复杂度。

进一步思考:你可以将时间复杂度优化至O(n_log_n)吗?

解题思路:

1. O(n^2)解法:

动态规划(Dynamic Programming)

2. O(n * log n)解法

下面我们来看一种优化时间复杂度到O(nlgn)的解法,这里用到了二分查找法,所以才能加快运行时间哇。思路是,我们先建立一个数组ends,把首元素放进去,然后比较之后的元素,如果遍历到的新元素比ends数组中的首元素小的话,替换首元素为此新元素,如果遍历到的新元素比ends数组中的末尾元素还大的话,将此新元素添加到ends数组末尾(注意不覆盖原末尾元素)。如果遍历到的新元素比ends数组首元素大,比尾元素小时,此时用二分查找法找到第一个不小于此新元素的位置,覆盖掉位置的原来的数字,以此类推直至遍历完整个nums数组,此时ends数组的长度就是我们要求的LIS的长度,特别注意的是ends数组的值可能不是一个真实的LIS,比如若输入数组nums为{4, 2, 4, 5, 3, 7},那么算完后的ends数组为{2, 3, 5, 7},可以发现它不是一个原数组的LIS,只是长度相等而已,千万要注意这点

class Solution(object):
    def lengthOfLIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums) == 0:
            return 0
        result = [nums[0]]
        for num in nums:
            if num < result[0]:
                result[0] = num
            elif num > result[len(result)-1]:
                result.append(num)
            else:
                start = 0 
                end = len(result)-1
                while start+1<end:
                    mid = (start+end)/2
                    if num > result[mid]:
                        start = mid
                    else:
                        end = mid
                if result[start]>=num:
                    result[start] = num
                else:
                    result[end] = num
        return len(result)
PreviousSearch in a Big Sorted ArrayNextFind Peak Element

Last updated 5 years ago

Was this helpful?