Climbing Stairs

You are climbing a stair case. It takesnsteps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note:Givennwill be a positive integer.

假设梯子有n层,那么如何爬到第n层呢,因为每次只能怕1或2步,那么爬到第n层的方法要么是从第n-1层一步上来的,要不就是从n-2层2步上来的,所以递推公式非常容易的就得出了:dp[n] = dp[n-1] + dp[n-2]。 由于斐波那契额数列的求解可以用递归,所以我最先尝试了递归,拿到OJ上运行,显示Time Limit Exceeded,就是说运行时间超了,因为递归计算了很多分支,效率很低,这里需要用动态规划 (Dynamic Programming) 来提高效率

class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        dp = [0] * (n + 1)
        dp[0] = dp[1] = 1
        for x in range(2, n + 1):
            dp[x] = dp[x - 1] + dp[x - 2]
        return dp[n]

上述代码的空间复杂度可以化简为O(1):

class Solution:
    # @param {integer} n
    # @return {integer}
    def climbStairs(self, n):
        a = b = 1
        for x in range(2, n + 1):
            a, b = b, a + b
        return b

Last updated

Was this helpful?