LeetCode_CC150
  • Introduction
  • LeetCode
    • Single Number
    • Contains Duplicate
    • Happy Number
    • Valid Anagram
    • Contains Duplicate II
    • Count Primes
    • Isomorphic Strings
    • Word Pattern
    • Island Perimeter
    • Find the Difference
    • Palindrome Permutation
    • Two Sum III - Data structure design
    • Number of Boomerangs
    • Longest Palindrome
    • Logger Rate Limiter
    • Find All Anagrams in a String
    • Keyboard Row
    • Distribute Candies
    • Shortest Word Distance
    • Majority Element
    • Plus One
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Pascal's Triangle
    • Remove Element
    • Rotate Array
    • Pascal's Triangle II
    • Two Sum II - Input array is sorted
    • Third Maximum Number
    • Max Consecutive Ones
    • K-diff Pairs in an Array
    • Maximum Product of Three Numbers
    • Maximum Distance in Arrays
    • Shortest Unsorted Continuous Subarray
    • Roman to Integer
    • Count and Say
    • Valid Parentheses
    • Longest Common Prefix
    • Valid Palindrome
    • Length of Last Word
    • Repeated Substring Pattern
    • Number of Segments in a String
    • Valid Word Abbreviation
    • Longest Uncommon Subsequence I
    • Student Attendance Record I
    • Reverse Words in a String III
    • Arranging Coins
    • Guess Number Higher or Lower
    • Search Insert Position
    • Min Stack
    • Diameter of Binary Tree
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Binary Tree Zigzag Level Order Traversal
    • Nim Game
    • Add Digits
    • Fizz Buzz
    • Climbing Stairs
    • Array Partition I
    • Power of Three
    • Power of Four
    • Power of Two
    • Ugly Number
    • Find All Numbers Disappeared in an Array
    • Find All Duplicates in an Array
    • Minimum Moves to Equal Array Elements
    • Meeting Rooms
    • Subsets
    • Subsets II
    • Count Complete Tree Nodes
    • Minimum Size Subarray Sum
    • Maximum Size Subarray Sum Equals k
    • Sparse Matrix Multiplication
    • Meeting Rooms II
    • Letter Combinations of a Phone Number
    • Binary Tree Vertical Order Traversal
    • Find the Celebrity
    • Merge Intervals
    • One Edit Distance
    • Multiply Strings
  • Array&String
    • Subarray Sum
    • Maximum Subarray
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Partition List
    • Merge Sorted Array
    • Two Sum
    • 3Sum
    • Product of Array Except Self
    • Rotate Image
    • Spiral Matrix
  • Linked List
    • Merge Two Sorted Lists
    • Insert into a Cyclic Sorted List
    • Sort List
    • Linked List Cycle
    • Copy List with Random Pointer
    • Add Two Numbers
    • Delete Node in a Linked List
    • Reverse Linked List
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Palindrome Linked List
    • Insertion Sort List
    • Remove Linked List Elements
    • Remove Duplicates from Sorted List
    • Swap Nodes in Pairs
    • Remove Nth Node From End of List
  • Binary Search
    • Missing Number
    • Valid Perfect Square
    • 744. Find Smallest Letter Greater Than Target
    • Sqrt(x)
    • First Bad Version
    • Pow(x, n)
    • Find the Duplicate Number
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Total Occurrence of Target
    • Search in a Big Sorted Array
    • Longest Increasing Subsequence
    • Find Peak Element
    • Search in Rotated Sorted Array
    • Search a 2D Matrix
    • Search a 2D Matrix II
    • Closest Number in Sorted Array
    • Search in Rotated Sorted Array II
    • Search for a Range
    • Maximum Number in Mountain Sequence
    • Last Position of Target
    • K Closest Numbers In Sorted Array
    • Sqrt(x) II
  • Binary Tree
    • Maximum Depth of Binary Tree
    • Invert Binary Tree
    • Same Tree
    • Binary Tree Paths
    • Lowest Common Ancestor of a Binary Search Tree
    • Balanced Binary Tree
    • Convert Sorted Array to Binary Search Tree
    • Symmetric Tree
    • Path Sum
    • Minimum Depth of Binary Tree
    • Binary Tree Preorder Traversal
    • Binary Tree Inorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Level Order Traversal II
    • Minimum Subtree
    • Flatten Binary Tree to Linked List
    • Binary Tree Longest Consecutive Sequence
    • Subtree with Maximum Average
    • Number of Islands
    • Serialize and Deserialize Binary Tree
    • Clone Graph
  • Data Structure
    • Hash Table
    • Bubble Sort
    • Selection Sort
    • Binary Search
    • Merge Sort
    • Binary Tree
    • 递归
    • DFS BFS
    • python技巧
  • two pointers
    • Reverse Vowels of a String
    • Reverse String
    • Remove Duplicates from Sorted Array
    • LeetCode 11. Container With Most Water
    • Strobogrammatic Number
    • Move Zeroes
    • Implement strStr()
  • 哈希表
    • Ransom Note
    • Minimum Index Sum of Two Lists
    • Longest Harmonious Subsequence
    • Untitled
Powered by GitBook
On this page

Was this helpful?

  1. Data Structure

Binary Search

For a given sorted array (ascending order) and a target number, find the first index of this number in O(log n) time complexity.

If the target number does not exist in the array, return -1.

Example

If the array is [1, 2, 3, 3, 4, 5, 10], for given target 3, return 2.

这是一个经典的binary serch的模板

1.start+1 < end,这样就不用考虑两个指针的前后,最后结束时一定是相邻的

2. mid = start + (end-start/)2,虽然对python来说不重要,但是对于Java等可以防止溢出

3. nums[mid] <, ==,> target 的三种情况

4. 是return start end的值 还是-1

class Solution {
    /**
     * @param nums: The integer array.
     * @param target: Target to find.
     * @return: The first position of target. Position starts from 0.
     */
    public int binarySearch(int[] nums, int target) {
        if (nums.length == 0){
            return -1;
        }
        int start = 0;
        int end = nums.length - 1;
        int mid;
        while (start + 1 < end){
            mid = start + (end - start) / 2;
            if (target > nums[mid]){
                start = mid;
            } else if (target < nums[mid]) {
                end = mid;
            } else {
                end = mid;
            }
        }
        if (nums[start] == target){
            return start;
        } else if (nums[end] == target){
            return end;
        } else {
            return -1;
        }
    }
}
class Solution:
    # @param nums: The integer array
    # @param target: Target number to find
    # @return the first position of target in nums, position start from 0 
    def binarySearch(self, nums, target):
        if len(nums) == 0:
            return -1

        start, end = 0, len(nums) - 1
        while start + 1 < end:
            mid = (start + end) / 2
            if nums[mid] < target:
                start = mid
            else:
                end = mid

        if nums[start] == target:
            return start
        if nums[end] == target:
            return end
        return -1
PreviousSelection SortNextMerge Sort

Last updated 5 years ago

Was this helpful?